Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8003): 407-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383779

ABSTRACT

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Subject(s)
Aquaporin 4 , Autoantibodies , Autoantigens , B-Lymphocytes , Immune Tolerance , Neuromyelitis Optica , Animals , Humans , Mice , AIRE Protein , Aquaporin 4/deficiency , Aquaporin 4/genetics , Aquaporin 4/immunology , Aquaporin 4/metabolism , Autoantibodies/immunology , Autoantigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD40 Antigens/immunology , Germinal Center/cytology , Germinal Center/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/metabolism , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Thyroid Epithelial Cells/immunology , Thyroid Epithelial Cells/metabolism , Transcriptome
2.
Proc Natl Acad Sci U S A ; 119(34): e2206208119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969754

ABSTRACT

Although glioblastoma multiforme (GBM) is not an invariably cold tumor, checkpoint inhibition has largely failed in GBM. In order to investigate T cell-intrinsic properties that contribute to the resistance of GBM to endogenous or therapeutically enhanced adaptive immune responses, we sorted CD4+ and CD8+ T cells from the peripheral blood, normal-appearing brain tissue, and tumor bed of nine treatment-naive patients with GBM. Bulk RNA sequencing of highly pure T cell populations from these different compartments was used to obtain deep transcriptomes of tumor-infiltrating T cells (TILs). While the transcriptome of CD8+ TILs suggested that they were partly locked in a dysfunctional state, CD4+ TILs showed a robust commitment to the type 17 T helper cell (TH17) lineage, which was corroborated by flow cytometry in four additional GBM cases. Therefore, our study illustrates that the brain tumor environment in GBM might instruct TH17 commitment of infiltrating T helper cells. Whether these properties of CD4+ TILs facilitate a tumor-promoting milieu and thus could be a target for adjuvant anti-TH17 cell interventions needs to be further investigated.


Subject(s)
Brain Neoplasms , CD4-Positive T-Lymphocytes , Glioblastoma , T-Lymphocytes, Helper-Inducer , Brain Neoplasms/pathology , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Flow Cytometry , Glioblastoma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/cytology , T-Lymphocytes, Helper-Inducer/cytology
3.
J Exp Med ; 219(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35819408

ABSTRACT

In certain instances, Th17 responses are associated with severe immunopathology. T cell-intrinsic mechanisms that restrict pathogenic effector functions have been described for type 1 and 2 responses but are less well studied for Th17 cells. Here, we report a cell-intrinsic feedback mechanism that controls the pathogenicity of Th17 cells. Th17 cells produce IL-24, which prompts them to secrete IL-10. The IL-10-inducing function of IL-24 is independent of the cell surface receptor of IL-24 on Th17 cells. Rather, IL-24 is recruited to the inner mitochondrial membrane, where it interacts with the NADH dehydrogenase (ubiquinone) 1 α subcomplex subunit 13 (also known as Grim19), a constituent of complex I of the respiratory chain. Together, Grim19 and IL-24 promote the accumulation of STAT3 in the mitochondrial compartment. We propose that IL-24-guided mitochondrial STAT3 constitutes a rheostat to blunt extensive STAT3 deflections in the nucleus, which might then contribute to a robust IL-10 response in Th17 cells and a restriction of immunopathology in experimental autoimmune encephalomyelitis.


Subject(s)
Cytokines/immunology , Interleukin-10 , Th17 Cells , Animals , Cell Differentiation , Interleukin-10/metabolism , Mice , NADH, NADPH Oxidoreductases/metabolism , Signal Transduction , Virulence
4.
J Mol Med (Berl) ; 100(6): 933-946, 2022 06.
Article in English | MEDLINE | ID: mdl-35536323

ABSTRACT

Aquaporin-4 (AQP4) is the molecular target of the immune response in neuromyelitis optica (NMO) that leads to severe structural damage in the central nervous system (CNS) and in the retina. Conversely, AQP4 might be upregulated in astrocytes as a compensatory event in multiple sclerosis. Thus, the functional relevance of AQP4 in neuroinflammation needs to be defined. Here, we tested the role of AQP4 in the retina in MOG(35-55)-induced experimental autoimmune encephalomyelitis (EAE) using optical coherence tomography (OCT), OCT angiography, immunohistology, flow cytometry, and gene expression analysis in wild-type and Aqp4-/- mice. No direct infiltrates of inflammatory cells were detected in the retina. Yet, early retinal expression of TNF and Iba1 suggested that the retina participated in the inflammatory response during EAE in a similar way in wild-type and Aqp4-/- mice. While wild-type mice rapidly cleared retinal swelling, Aqp4-/- animals exhibited a sustainedly increased retinal thickness associated with retinal hyperperfusion, albumin extravasation, and upregulation of GFAP as a hallmark of retinal scarring at later stages of EAE. Eventually, the loss of retinal ganglion cells was higher in Aqp4-/- mice than in wild-type mice. Therefore, AQP4 expression might be critical for retinal Müller cells to clear the interstitial space from excess vasogenic edema and prevent maladaptive scarring in the retina during remote inflammatory processes of the CNS. KEY MESSAGES : Genetic ablation of AQP4 leads to a functional derangement of the retinal gliovascular unit with retinal hyperperfusion during autoimmune CNS inflammation. Genetic ablation of AQP4 results in a structural impairment of the blood retina barrier with extravasation of albumin during autoimmune CNS inflammation. Eventually, the lack of AQP4 in the retina during an inflammatory event prompts the exaggerated upregulation of GFAP as a hallmark of scarring as well as loss of retinal ganglion cells.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Gliosis , Albumins/metabolism , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Cicatrix/pathology , Gliosis/metabolism , Gliosis/pathology , Inflammation/metabolism , Mice , Retina/metabolism
5.
Neurol Ther ; 11(2): 905-913, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35124795

ABSTRACT

INTRODUCTION: In spite of antiviral treatment, herpes simplex encephalitis (HSE) remains associated with a poor prognosis and often results in neurological impairment. The B cell response in HSE is poorly understood. The objective of this study was to identify, in a patient with HSE, B cell clones in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs) that expanded between two different time points during the course of infection. METHODS: CSF cells and PBMCs were sampled from a HSE patient at two time points 5 days apart. B cells were analyzed using single-cell immune profiling (CSF cells) and conventional deep immune repertoire sequencing (PBMCs). RESULTS: We identified CSF B cell clones that expanded from time 1 to time 2. Some of these B cell clones could also be found in the peripheral blood. We also report the corresponding B cell receptor (BCR) sequences. CONCLUSION: In our patient, HSE resulted in an intrathecal B cell response with expanding CSF clones. We report the B cell receptor sequences of several expanding and dominating clones; these sequences can be used to create recombinant antibodies. Even though the antigen specificity of these expanding clones is unknown, our findings suggest that an adaptive immune response in the central nervous system contributes to repelling herpes simplex virus infection in the brain.

6.
Article in English | MEDLINE | ID: mdl-34911793

ABSTRACT

BACKGROUND AND OBJECTIVES: To investigate whether the formation or retention of meningeal ectopic lymphoid tissue (mELT) can be inhibited by the sphingosine 1-phosphate receptor 1,5 modulator siponimod (BAF312) in a murine model of multiple sclerosis (MS). METHODS: A murine spontaneous chronic experimental autoimmune encephalomyelitis (EAE) model, featuring meningeal inflammatory infiltrates resembling those in MS, was used. To prevent or treat EAE, siponimod was administered daily starting either before EAE onset or at peak of disease. The extent and cellular composition of mELT, the spinal cord parenchyma, and the spleen was assessed by histology and immunohistochemistry. RESULTS: Siponimod, when applied before disease onset, ameliorated EAE. This effect was also present, although less prominent, when treatment started at peak of disease. Treatment with siponimod resulted in a strong reduction of the extent of mELT in both treatment paradigms. Both B and T cells were diminished in the meningeal compartment. DISCUSSION: Beneficial effects on the disease course correlated with a reduction in mELT, suggesting that inhibition of mELT may be an additional mechanism of action of siponimod in the treatment of EAE. Further studies are needed to establish causality and confirm this observation in MS.


Subject(s)
Azetidines/pharmacology , Benzyl Compounds/pharmacology , Encephalomyelitis, Autoimmune, Experimental , Meninges/drug effects , Multiple Sclerosis , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Tertiary Lymphoid Structures , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/complications , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Humans , Meninges/immunology , Mice , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Multiple Sclerosis/prevention & control , Tertiary Lymphoid Structures/drug therapy , Tertiary Lymphoid Structures/etiology , Tertiary Lymphoid Structures/prevention & control
8.
Article in English | MEDLINE | ID: mdl-34021057

ABSTRACT

OBJECTIVE: To investigate whether anti-CD20 B-cell-depleting monoclonal antibodies (ɑCD20 mAbs) inhibit the formation or retention of meningeal ectopic lymphoid tissue (mELT) in a murine model of multiple sclerosis (MS). METHODS: We used a spontaneous chronic experimental autoimmune encephalomyelitis (EAE) model of mice with mutant T-cell and B-cell receptors specific for myelin oligodendrocyte glycoprotein (MOG), which develop meningeal inflammatory infiltrates resembling those described in MS. ɑCD20 mAbs were administered in either a preventive or a treatment regimen. The extent and cellular composition of mELT was assessed by histology and immunohistochemistry. RESULTS: ɑCD20 mAb, applied in a paradigm to either prevent or treat EAE, did not alter the disease course in either condition. However, ɑCD20 mAb depleted virtually all B cells from the meningeal compartment but failed to prevent the formation of mELT altogether. Because of the absence of B cells, mELT was less densely populated with immune cells and the cellular composition was changed, with increased neutrophil granulocytes. CONCLUSIONS: These results demonstrate that, in CNS autoimmune disease, meningeal inflammatory infiltrates may form and persist in the absence of B cells. Together with the finding that ɑCD20 mAb does not ameliorate spontaneous chronic EAE with mELT, our data suggest that mELT may have yet unknown capacities that are independent of B cells and contribute to CNS autoimmunity.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigens, CD20/immunology , B-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Immunologic Factors/pharmacology , Meninges , Tertiary Lymphoid Structures , Animals , Antibodies, Monoclonal/administration & dosage , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Immunologic Factors/administration & dosage , Meninges/drug effects , Meninges/immunology , Mice , Mice, Transgenic , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/prevention & control , Myelin-Oligodendrocyte Glycoprotein , Tertiary Lymphoid Structures/drug therapy , Tertiary Lymphoid Structures/immunology
9.
Brain ; 144(6): 1697-1710, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33693558

ABSTRACT

Meningeal B lymphocyte aggregates have been described in autopsy material of patients with chronic multiple sclerosis. The presence of meningeal B cell aggregates has been correlated with worse disease. However, the functional role of these meningeal B cell aggregates is not understood. Here, we use a mouse model of multiple sclerosis, the spontaneous opticospinal encephalomyelitis model, which is built on the double transgenic expression of myelin oligodendrocyte glycoprotein-specific T-cell and B-cell receptors, to show that the formation of meningeal B cell aggregates is dependent on the expression of α4 integrins by antigen-specific T cells. T cell-conditional genetic ablation of α4 integrins in opticospinal encephalomyelitis mice impaired the formation of meningeal B cell aggregates, and surprisingly, led to a higher disease incidence as compared to opticospinal encephalomyelitis mice with α4 integrin-sufficient T cells. B cell-conditional ablation of α4 integrins in opticospinal encephalomyelitis mice resulted in the entire abrogation of the formation of meningeal B cell aggregates, and opticospinal encephalomyelitis mice with α4 integrin-deficient B cells suffered from a higher disease burden than regular opticospinal encephalomyelitis mice. While anti-CD20 antibody-mediated systemic depletion of B cells in opticospinal encephalomyelitis mice after onset of disease failed to efficiently decrease meningeal B cell aggregates without significantly modulating disease progression, treatment with anti-CD19 chimeric antigen receptor-T cells eliminated meningeal B cell aggregates and exacerbated clinical disease in opticospinal encephalomyelitis mice. Since about 20% of B cells in organized meningeal B cell aggregates produced either IL-10 or IL-35, we propose that meningeal B cell aggregates might also have an immunoregulatory function as to the immunopathology in adjacent spinal cord white matter. The immunoregulatory function of meningeal B cell aggregates needs to be considered when designing highly efficient therapies directed against meningeal B cell aggregates for clinical application in multiple sclerosis.


Subject(s)
B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Meninges/immunology , Spinal Cord/immunology , Animals , Autoimmunity/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Mice, Transgenic , Spinal Cord/pathology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...